

CVC's Head Office Salt Study

Lorna Murison, Jessica Santander-Guzman, Amanjot Singh, Sara Jose

CVC/Peel/TRCA Salt Workshop September 14, 2023

The Credit River Watershed

Chloride in our Watershed

Chloride Trends

- Road salt = NaCl
- 23 sites
- Increasing at 17 sites
- Decreasing at 3 sites
- Stable at 3 sites
- Exceeds (75th percentile) chronic objective at 11 sites
- Urban areas

11 real-time water quality stations

Chloride in Cooksville Creek

Winter Maintenance 101

How Salt Works

- Needs moisture to work
- Brine spreads, melts more snow, forms more brine...
- Only works to about -10 °C
- Additives (organic, other salts) can lower the effective working temperature

Best Practices: Brine/Liquids

- Salt water
- Kick starts melting process
- Less chloride
- Anti-icing: apply brine \rightarrow snowfall \rightarrow plow \rightarrow salt (NaCl rock salt but much less!)
- Dilute brine with organic product like beet juice

Head Office Salt Study

CVC Head Office Salt Management Plan

- Encourage liquids and antiicing
- Do not use sand (can clog pavers)
- Liquids should not be used on permeable pavement?
- Excludes sidewalks

Credit Valley Concervation Main Office Maintenance Zones

How well is the salt management plan working (i.e., liquids)?

How effective are liquids on permeable pavements?

Data Collection

- Parking lots:
 - Contractor salt application
 data permeable and asphalt
 - Images from time lapse and security cameras
- Test plots:
 - Manually applied product and shoveled

Credit Valley Conservation Head Office

Results – Parking Lots

6:01 AM 02/18/2022

Bare Pavement Regain Time

- Image classification into 6 categories
- Asphalt is usually wetter
- Permeable has dry snow

Melting Patterns: Asphalt vs. Permeable

Results – Test Plots

Study Design

- 5 plots on permeable and asphalt
- 4 materials plus control
- Each plot received 1 material
 - Anti-icer
 - De-icer
- Cleared snow
- Measured friction at intervals

Conclusions

- Conventional asphalt had faster BPRT, but not necessarily faster friction regain time.
- Any product (solid or liquid) is less efficient on permeable pavement than asphalt, if bare pavement is the goal. Some product will always be lost to infiltration.
- Enough liquid remained on permeable surface to have an impact.
- Need better definition of level of service on permeable pavements, bare pavement should not be the goal.
- Salt application rates on permeable should be reduced due to residual.

inspired by nature

Gaps or Still to Come

- How much chloride is used by the contractor in the rock salt only vs. anti-icing with beet juice scenarios?
 - No comparable events; test plots use same application rate
- BPRT on the controlled plots
 - Images are classified, need to crunch the data
- Beet brine on asphalt vs. permeable (~4 events)
 - Analysis to come