

A Program of Toronto and Region Conservation Authority

Energy Leaders Consortium Decarbonizing Industry with Lukas Glaspell Trane Technologies Toronto

April 20, 2023

We respectfully acknowledge that we are situated on the Traditional Territories and Treaty Lands, in particular those of the Mississaugas of the Credit First Nation, as well as the Anishinaabe of the Williams Treaty First Nations, the Huron Wendat, the Haudenosaunee, and the Metis Nation.

As stewards of land and water resources within the Greater Toronto Region, Toronto and Region Conservation Authority appreciates and respects the history and diversity of the land and is grateful to have the opportunity to work and meet on this territory.

Additional Resources

- yrnature.ca/acknowledging_land
- edgeofthebush.ca
- native-land.ca
- Text 1-855-917-5263 with your City and Province to learn whose traditional territory you're on (standard text messaging rates may apply)

Agenda

Time	Activity
1:00pm – 1:10pm	Introduction
1:10pm – 1:40pm	Decarbonizing Industry with Trane Technologies
1:40pm – 2:00pm	Question & Answer Period

Introduction

Upcoming ELC Sessions & PPG Events

Date	Торіс
May 27th 9am-1pm	PPG Members only tree planting – at Claireville Conservation Area, limit 10 people per company (in-person)
May 30th 1:00pm-4:30pm	Financing Net-Zero: Incentives – learn about the funding available for Conservation and Demand Management (CDM) programs (in-person or virtual)
May 11th 1:00pm-2:30pm	Member Roundtable – Trillium Health Presentation (virtual)
June 15th 8:30am-12:30pm	Site Visit – Sheridan College Meeting & Tour (In-person)
July 13th Time TBD	Educational Session – Reducing Scope 3 with CarbonZero (virtual)

Please contact Julia Kole if you are interested in hosting an ELC Site Visits or presenting at a Member Roundtable this year

Updates and Reminders

- **Direct Current**: a quick newsletter for ELC members
- **PPG & CarbonHound Pilot**: survey coming soon!
- A request for Member Spotlights & Case Studies
- Opportunities for PPG outreach at your events

Today's Speaker

Lukas Glaspell, Trane Technologies Toronto

Lukas.Glaspell@trane.com

- Account executive with the Trane Technologies
 Toronto
- Leverages BAS, supplies equipment, optimizes HVAC operations for clients
- Key project to note: working with Noventa Energy to extract waste heat from public sewer systems and utilize it for building heating

Trane Technologies Toronto

Electrification of Heat: Produce building heat with low, to no carbon!

2023

Lukas Glaspell

Key Decarbonization Terms

De-carbonization

Any process that removes carbon in the atmosphere or prevents carbon from being emitted

Carbon Dioxide Equivalent (CO₂e) Includes CO₂ and other greenhouse gasses

Greenhouse Gasses

Gasses that trap heat in the atmosphere – CO_2 , Methane, CFCs, H₂O

Electrification

Process of replacing fossil fuel-sourced energy with electricity-sourced energy

Direct (Scope 1)

Related to on-site process FF used for heating / refrigerant leak

Indirect (Scope 2)

Related to off-site electricity production

Electric Grid Supply Side

The facilities that generate electricity that can then be transmitted through wires to customer end users

Electric Grid Demand Side

The homes, buildings, and industrial complexes connected to the electric arid that consume the electricity being produced

Electricity Consumption

The total amount of electricity used over a given period of time ("billing period")

Electricity Demand

The RATE at which electricity is consumed during any single moment in time

Heat Pumps, Heat Pumps, Heat Pumps – Chiller/Heaters

Electrification refers to the process of replacing technologies that use fossil fuels (coal, oil, and natural gas) with technologies that use electricity as a source of energy

Pillars of Decarbonization

Energy Efficiency (

Reducing Indirect Emissions

Indirect GHG emissions (AKA Scope 2) are generally associated with emissions one step removed a customer's direct operations Focusing on improving overall energy efficiency and reducing emissions in new construction and retrofits

Also referred to as "Clean Energy", which comes from natural sources or processes that are constantly replenished, such as solar and wind

Transition to low GWP refrigerants in HVAC equipment, and on-site management to minimize leaks

The process of

switching building

energy sources from

on-site fossil fuel to

electric sources

Electrification

Reducing Direct Emissions

Direct GHG emissions (AKA Scope 1) are those that occur from sources directly controlled by the customer

Refrigerant Management

Renewable Energy (

Gas to Heat Pump Conversion Impact to GHG Reduction

Electrification Products

Hot Water Supply Temperature, Outdoor Air and COP

* Heat pump powered by 884lbCO2e/MWH grid vs 90% eff natural gas hot water heater

140°F hot water requires 35% more peak power and annual heating energy than 105°F

What About Embodied Carbon?

Operational Emissions vs Embodied Emissions

Source: Trane EPD.

Electrified Systems – Heat Sources

Largest in the World--Thermal Energy of 19MW

- 19 MW of thermal energy supply
- Integrated into existing HVAC infrastructure
- WET[™] Project Details
- Phase 1 60% of peak demand/90% of total
 - Wetwell diameter 35 feet
 - Wetwell depth 165 feet
 - Looking to expand the system to do entire hospital

Noventa's WET[™] system at hospital in Toronto

Project Layout

Solving Decarbonization Challenges with Thermal Batteries Cooling with Air-to-Water Heat Pump

Solving Decarbonization Challenges with Thermal Batteries Heating with Air-to-Water Heat Pump

Solving Decarbonization Challenges with Thermal Batteries Storage Source Heating - Thermal Batteries & Chiller-Heater

Solving Decarbonization Challenges with Thermal Batteries

Rethinking Hydronic Systems to Enable Building Electrification

Heat Pump RTUs

Reducing complexity. Precedent makes the most of your time.

ASCEND® Air-to-Water Heat Pump

Model: ACX

Capacity Range: 140 to 230 tons cooling, 1500 to 2500 MBh heating

Refrigerant: R-454A

Compressor Design: Scroll

Controls: Symbio[®] 800 with Adaptive Controls[™]

Factory-installed Optional Features: Integrated pump packages & sound-reduction packages, Drain pan

Features and Benefits

Support of electrification of heat Ease of installation Simplified service

0	Operating Limitations		
Ch	illed Water	40 to 65F	0 to 125F Ambient
Ho	ot Water	68 to 140F	0 to 95F Ambient
Max leaving at min ambient - 100F at 0F			
Catalog (AC-PRC002*-EN) IOM (AC-SVX002*-EN)			

Next Gen Future ASHP

Thermafit[™] Heater/Heat Recovery – Retrofit

Model: MWC and MWT

Capacity Range: 15 to 80 tons cooling, 216 to 1140 MBh

Max of 10 modules per bank

Refrigerant:R-410A, 134a for Heat Recovery above 140F

Compressor Design: Scroll

Factory-installed Options: VSD, Free Cooling, Low sound, Pump/Tank package

<u>Features and Benefits</u> Easy expandability Extreme flexibility Simplified service Small footprint/Easy Access

Operating Limitations				
Chilled Water	38 to 65F			
Hot Water	60 to 165F			
R410A, 42 F minimum LWT and 140 F maximum LWT				
R134a, ~ 70 F minimum LWT to get 175 F maximum LWT; at 42 F LWT, maximum 160 F LWT				
Available literature Catalog (ARCTC-PRC002*-EN) IOM (ARTC-SVX002*-EN & ARTC-SVX004*-EN)				

Thermafit[™] Multipipe Unit – Geothermal

Model: MWS

Capacity Range: 30 to 60 tons cooling, 1275 to 2690 MBh

- Min of 3, Max of 8 modules per bank
- Refrigerant: R-410A
- Compressor Design: Fixed scroll

Factory-installed Optional Features: Single Point Power, Low Sound Panel Package

Features and Benefits

Simultaneous Heating and Cooling Single System to meet Varying Heating and Cooling Demands Electric Heating Fluids from Different Loops do not mix

Operating LimitationsCooling onlyChilled water 54-44FSource 85-95FHeating onlyHot water 100-120FSource 54-44FSimultaneousChilled water 54-44FHot water 100-120FAvailable literature
Catalog (ARCTC-PRC003*-EN)
IOM (ARTC-SVXU05*-EN)Source 54-44F

RTWD – Heater/Heat Recovery

Capacity Range: 80 to 250 tons Refrigerant: R-134a or R-513A or 515B Compressor Design: Helical-Rotary Controls: CH530 with Adaptive Controls[™] Factory-installed Optional Features: sound-reduction package

<u>Features and Benefits</u> Reliability High Lift Versatility Precision Temperature Control

Operating Limitations			
Chilled Water	10F (-12C) to 65F		
Hot Water	60 to 167F (75C)		
Max lift 100F			
Brochure (RLC-SLB018-EN) Catalog (RLC-PRC29*-EN) IOM (RLC-SVX09*-EN)			

Cascade Chiller Heater

Capacity Range: 20,000 to 35,000 heating MBh **Refrigerant:** R-514A or R-1233zd(E) **Compressor Design:** Centrifugal **Controls**: Tracer® SC+ for module and Symbio 800 for unit Factory-installed Optional Features: 6 pipe heat recovery, Belzona

coating, sacrificial anodes, CuNi tubes

Features and Benefits

Lift capability: 145F Turndown: 25% High Temp CVHH can provide additional cooling in summer High Temp CVHH can be sold individually as boost

Operating Limitations				
Hot Water	Up to 180F			
Chilled Water	34 to 65F			

High Temperature Hot water Booster

Refrigerants near zero GWP
Maximum condenser
temperature of +120°C (248°F)
Minimum Heat Source
temperature of -20°C (-4°F)

•Exergy heat pumps provide significant results for a wide variety of applications:

Heating in residential or commercial buildings
District heating
Heating industrial processes
Domestic hot water delivery

...Leading to our 2030 Commitments

Gigaton Challenge

Reduce customer carbon footprint by 1 gigaton*

- Accelerate clean technologies that heat and cool buildings in sustainable ways
- Increase energy efficiency in buildings, homes and transport
- Reduce food loss in the global cold chain
- Transition out of high-Global Warming Potential Refrigerants

Design systems for circularity

Increase access to heating, cooling and fresh food

*1B metric tons of CO₂e

Leading by Example

Achieve carbon neutral operations Deliver zero waste to landfills

Become net positive with water use

Reduce absolute energy consumption by 10%[†]

Opportunity for All

Achieve workforce diversity reflective of our communities

Achieve gender parity in leadership roles

Maintain world-class safety metrics

Provide market-competitive wages, benefits and leading wellness offerings for workforce

Invest \$100 million in building sustainable futures for under-represented students

Dedicate 500,000 employee volunteer hours in our communities

Contact: Trane Canada

Lukas Glaspell 525 Cochrane Dr. Markham ON L3R 8E3 647.991.9570 Lukas.Glaspell@trane.com

TECHNOLOGIES

Efficiency and GWP Comparison

PastTransitionalLower
GWPUltra-Low
GWP

What is needed by the zone equipment?

Most equipment can be selected for space heating with 100-110°F Hot water 105F HWS Minimum Hot Water Supply Temperature Equipment **DOAS** Air Handler >80°F Central Air Handler/VAV 95-105°F **Mixed Air** Supply Air Single Zone VAV AHU 100-105°F 60F 95F VAV boxes (4 row) 95-105°F Hydronic 100-115°F Fan Coil Units w/ Changeover coil Changeover Coil

P-Spinger

間目

A Program of Toronto and Region Conservation Authority

Thank You!